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Abstract. The semi-arid grasslands of the Colorado Plateau are productive, diverse, and

extensive ecosystems.  The majority of these ecosystems have been altered by human land

use, primarily through the grazing of domestic livestock, yielding a plethora of environ-

mental and social consequences that are tightly interconnected.  From an agroecological

perspective, untangling these issues requires both an understanding of the role of livestock

grazing in bioregional food production and the effect of that grazing on ecological

sustainability.  To address the former, we discuss the importance of  cattle ranching as a

bioregional food source, including estimates of meat production and water use in Arizona.

To address the latter, we present data from a long-term project addressing changes in native

plant community composition, under a range of alternative livestock management strate-

gies.  Our study site near Flagstaff, AZ includes four different management treatments: (1)

conventional low-intensity, long-duration grazing rotations; (2) high-intensity, short-dura-

tion rotations; (3) very high-impact, very short-duration grazing (to simulate herd impact);

and, (4) livestock exclosure.  Preliminary results suggest belowground properties are re-

sponding more quickly to grazing treatments than aboveground properties.  Particular
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response variables, such as cyanobacteria and diatoms, show a marked short-term response

to very high-impact, short-duration grazing, but long-term implications are as yet un-

known.

Key words:  ecological sustainability, bioregional food production, livestock grazing,

biological diversity, participatory research.

INTRODUCTION

Two years ago, we addressed the 4th Biennial Conference of  Research on the

Colorado Plateau on the issue of the ecological sustainability of cattle grazing on arid

rangelands (Sisk et al. 1999).  At that time, our focus was on the role of science in

helping to resolve the contentious and often bitter social battle over grazing policy

and practices, and the opportunities presented by public participation in the scientific

process (Sclove 1998).  We demonstrated that the current level of  understanding of

grazing impacts in the Southwest often lacked a rigorous scientific foundation, and

we suggested an approach for designing research efforts to address scientific issues

underlying environmental conflict.  The centerpiece of our efforts has been an experi-

ment designed to test a set of hypotheses derived from differing claims voiced by

ranchers, resource managers, and environmentalists about the ecological impacts of

livestock grazing on the Colorado Plateau.  Here we provide an update, expanding on

the scientific and policy themes that are so closely interwoven in the grazing debate.

Currently, consensus on the issue of  livestock grazing in the Southwest does

not appear to be on the near horizon of the socio-political landscape.  This impres-

sion is particularly apparent in the mainstream media that tend to emphasize the

contentiousness of  environmental issues (e.g., Rotstein 1999).  However, deeper

investigation into the ecological literature provides some evidence of a broad agree-

ment on livestock impacts.  For example, Belsky et al. (1999) summarized roughly

100 papers from the scientific literature that measured the effects of cattle grazing on

riparian zones in the western U.S.  Their review found considerable evidence that

cattle grazing often has negative effects on stream channel morphology, soils, vegeta-

tion, and wildlife.  This review and others (e.g., Platts 1991, Kauffman and Krueger

1984, Armour et al. 1994), make a compelling case that livestock grazing should be

carefully controlled, if not altogether eliminated, along riparian zones.

Riparian ecosystems, however, represent only a fraction of grazed lands in the

Southwest, and information from this sensitive habitat-type does not necessarily

pertain to other ecosystems.  Upland grasslands, which constitute the majority of

grazed lands, differ substantially from riparian ecosystems in structure, function, and

evolutionary history, and the impacts of  livestock grazing on these two ecosystems

may be very different.  Although we know of no rigorous scientific comparison of

Southwestern riparian and upland responses to similar grazing systems, the litera-

ture suggests that the response of  upland systems are more varied.  Rambo and
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Faeth (1999), studied semi-arid grasslands that had been excluded from grazing for

over eight years, and showed that ungrazed grasslands had fewer plant species than

adjacent, grazed plots.  Insect species richness, however, showed no significant differ-

ence.  In studies of ground-foraging birds, Bock et al. (1984) found that grazed areas

and adjacent exclosures had similar abundances in years of average rainfall, but

exclosures supported nearly 3 times as many birds as the grazed areas following two

consecutive drought years (Bock and Bock 1999).  This complexity of organismal

responses to grazing, as well as an overall paucity of rigorous scientific information,

has motivated our efforts to address relevant ecological questions through manipu-

lative experiments conducted in concert with ranch management teams.  We provide

a brief retrospective on our involvement with two such groups that include environ-

mental advocates and policy makers, and explain how this experience has provided a

broader context for considering trade-offs associated with livestock grazing in the

Southwest.

Ground Zero for Grazing Policy

For several decades, the center of conflict regarding grazing policy has focused on

whether grazing degrades “the land.”  Fifty years of research provides clear, but

equivocal evidence:  it does in some places and at some times, and at other times and

places it does not.  In fact, there is also compelling evidence that livestock grazing can

speed the recovery of certain degraded sites (van Wieren 1991), and that grazing may

increase productivity in some ecosystems (McNaughton et al. 1997, Milchunas et al.

1989).  Clearly, further efforts to characterize grazing as “good” or “bad” are overly

simplistic and, we believe, problematic.  Instead, two broad questions emerge:  (1)

how and where can grazing be practiced in an ecologically sustainable manner; and (2)

how do we, the public, wish to manage our public grasslands in the Southwest?  The

answers to the former question will come from greater collaborative interaction among

ranchers, research scientists, environmental groups, and the public who plan and

apply on-the-ground management.  We are optimistic that the collaborative groups,

being founded with increasing frequency across the West, will be at the forefront of

collaborative decision-making.  The latter question however, is less tractable.  Ex-

treme, polarizing views are propagated daily through the media as demonstrated by

the well-circulated jingle “cattle-free by ’93" (now “2003”) and the directly opposing

political views espoused through the ranching industry.  In fact, the contest has

become so mythologized and self-referential that it is easy to lose sight of the real

questions, such as whether regional agriculture is important to the four-corners states,

what lands can be grazed sustainably and profitably, and what alternative land man-

agement should replace grazing in areas where it is unsustainable or not desired by

the public.

Bioregional Perspective of Food Production

The scientific debate over livestock grazing has focused primarily on single spe-

cies’ responses (such as endangered species) and overall forage production.  Ecosys-

tems grazed by livestock have justifiably been compared to ungrazed areas to ascer-
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tain human impacts on natural systems.  Interestingly, few comparisons are made

between the biological diversity and ecosystem function of grazed ecosystems and

other agroecosystems.  In other words, if we assume that humans are going to

impact natural ecosystems to produce food and fiber through agriculture, it seems

appropriate to consider the relative ecological impacts of different agricultural prac-

tices in the arid Southwest.

Inherent to conventional agroecosystems dedicated to annual crop production

is the nearly total replacement of native plant and animal communities.  They gener-

ally consist of non-native plants (both crops and weeds), and fauna (especially birds,

mammals, and arthropods) that can exist in communities that experience distur-

bance at high frequencies and intensities through actions such as plowing soils, which

often increase erosion rates and contribute to a decline in soil organic matter (Davidson

and Ackerman 1993).  Rarely do modern agricultural systems generate sufficient

nutrients internally to balance nutrients exported in crops, thus most farms depend

on large inputs of synthetic fertilizers (Doerge et al. 1991).  The crop uptake of these

fertilizers however is fairly inefficient, often not higher than 50%, with residue nutri-

ents often making their way into waterways, or the atmosphere (Matson et al. 1998).

Inputs of pesticides including insecticides, herbicides and fungicides are also com-

monplace in conventional agroecosystems.  While the pesticides applied today are

less persistent in the environment than those used in previous decades, they are

nonetheless highly toxic and relatively indiscriminate in the species that they affect.

Finally, modern agroecosystems require substantial fossil fuel subsidies in the pro-

duction process.  The energy used to cultivate, harvest, synthesize and apply fertiliz-

ers, and irrigate, primarily comes from fossil fuels.  The energy return on each fossil-

fuel calorie invested in agriculture tends to be quite low (Pimentel and Pimentel

1996).

When compared with agro-ecosystems dedicated to annual agriculture, plant

species diversity in grazed, upland agroecosystems in the Southwest appear relatively

intact (Hughes 1996, Rambo and Faeth 1999).  The specific ecological impacts of

cattle grazing are often difficult to estimate, given the lack of non-grazed ecosystems

that can be used as controls.  However, this is not to say that livestock grazing is

innocuous, because there is strong evidence that grazing can alter community com-

position of particular ecosystems through mechanisms such as selective biomass

removal, alteration of soil properties, fire suppression, and transport of exotic spe-

cies (Fleischner 1994).  Indirect consequences of livestock grazing, such as the intro-

duction of grasses for forage, especially Lehmann lovegrass (Eragrostis lehmanniana)

and buffelgrass  (Pennisetum ciliare), have had profound impacts on community dy-

namics in the Southwest (Bock and Bock 1998, Burquez and Martinez-Yrizar 1997).

Where exotics have not been intentionally introduced, however, grazed ecosystems

are generally dominated by native, perennial species (Rambo and Faeth 1999).

Estimating total costs of any agriculture is challenging given the gulf that exists

between actual and perceived costs of natural resources.  But without accurate cost

estimates, the grazing debate remains awash with ambiguous statements.  In 1990,

crop agriculture in Arizona used approximately 5.2 million acre feet of water (Eden
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and Wallace 1992).  Livestock in Arizona consume approximately 15 gallons animal-

unit -1 day -1, which translates into an estimated annual water consumption by all

range-fed Arizona livestock of only 8,384 acre-feet of water (1 acre-foot water =

1233.482 m3; Table 1).  When ranchers manage their livestock using horses, livestock

grazing on Western rangelands may represent the only food production system in

the United States that is based largely on solar energy rather than fossil fuel inputs.  In

other words, the work performed and inputs used to grow crops or raise animals in

most agroecosystems involves a very significant reliance on commercial energy (Pimentel

and Pimentel 1996).  Producing livestock on western rangelands, however, relies

heavily on native rates of  net primary productivity, while using wind, gravity and/or

solar panels to provide water.

Tradeoffs

Livestock grazing may have lower ecosystem impacts than annual agriculture,

but it is also much less productive.  A critical question, therefore, is whether the

production of food from rangelands balances the tradeoffs in native ecosystem

diversity and productivity that may occur with livestock grazing.  To begin to address

this question, it is important to develop a sense of  arid rangeland food productivity.

Following, we estimate levels of meat produced by cattle grazing on Arizona range-

lands, excluding feedlot productivity.  While these estimates are crude, we believe they

provide a reasonable, approximate understanding of potential protein production.

Table 1.  Estimated annual meat production and livestock water consumption according

to ecosystem type in Arizona.

Ha animal edible beef water

Acres Area %  unit-1 prod.3,4 protein5 consumed6

Ecosystem AUM-1, 1 (ha) cover year-1 kg year-1 kg year-1 m3 year-1

Chaparral 12.5 1,303,452 4 61 1,871,842 411,805 442,808

Grassland 4.1 5,793,686 24 20 25,376,344 5,582,795 6,003,092

Pinon-Juniper 12.5 5,164,781 18 61 7,416,964 1,631,732 1,754,576

Ponderosa 19.8 885,079 3 96 807,634 177,679 191,056

Desert 20.0 9,143,387 31 97 8,257,226 1,816,611 1,953,374

Total 22,290,385 80 43,730,113 9,620,625 10,344,905

1 AUM = animal unit month = the area (in acres) required to feed one steer or cow/calf unit for 1 month.  AUMs based on
actual stocking rates for different Arizona ecosystems reported in USFW (1999)

2 D. Brown (pers. comm.)

3 In an animal’s first year on the range, it will gain ~190 kg, and if it is left for a second year, it will gain ~330 kg in a good

(wet) year and as low as 165 in a dry year.  On average, therefore, an animal gains approximately 219 kg yr-1 (A. Kessler
and D. Moroney, pers. comm.)

4 Edible meat constitutes ~40% of the total animal weight

5 Beef is ~22% protein (Ensminger et al. 1983) and the average yearly protein requirement for a person is ~23.7 kg

6 One cow or steer requires 15 gallons of water per day (Naeser and St. John 1998)
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Stocking rates of livestock on lands in Arizona range between 4 and 20 acres

AUM-1 (an animal unit month is either one steer or cow-calf  pair) for desert, chaparral

and woodland ecosystems (USFW 1999).  This range in stocking rates reflects the

variation in herbaceous, aboveground net primary productivity of the different eco-

systems.  By making conservative assumptions about stocking rates, we estimate

that the current grazing of  80% of  Arizona’s land surface (Mayes and Archer 1982)

results in sufficient protein production to supply one million people with 40% of

their annual requirements (assuming 65g protein capita-1 day -1).  Alternatively, if

livestock numbers were decreased by 50% across all ecosystem types, then the 40% of

Arizona land that would remain grazed could supply one million people with ap-

proximately one-fifth of their annual protein requirements.  This latter level of food

production is large enough that we believe the value of bioregional food production

needs to be considered in the debate regarding livestock grazing in the arid South-

west.  Elimination of livestock grazing in the Southwest would substantially impede

any regional movement toward greater reliance on bioregional food production, and

would shift agricultural activity, as well as the concomitant environmental impacts, to

other regions.  The potential socio-economic implications of such a proposal are

beyond the scope of this paper, but undoubtedly warrant further consideration.

Reshaping the Debate

Native Habitats as the Endpoint

Although plant surveys have been a mainstay of  the vast majority of  grazing

studies, the emphasis has often been placed on total forage, without regard for the

particular species that make up the community (e.g., Holechek et al. 1999).  Increasing

public recognition of the value of native habitats and native species has made this an

issue of contention in the current grazing debate.  Dramatic declines in native habi-

tats, such as the degradation or loss of  80% of  Western riparian ecosystems (U.S.

Department of Interior 1994), underscore the rapidity of change wrought by hu-

mans.  Moreover, the list of nonnative plant species in Arizona has doubled in the

past 50 years to roughly 330 and continues to grow (Burgess et al. 1991).  Complicat-

ing this issue is the fact that the establishment of many nonnative plants in grass-

lands was aided in the early 1900s by government-subsidized seeding programs that

intentionally (and unintentionally) included nonnative plants (Bahre 1995, Cox and

Ruyle 1998).  This trend in the loss of native habitats and native species is the product

of multiple land-use actions, many of which are historically associated with, but not

inherently necessary to livestock production (e.g., road building, erosion of

streambanks, extensive fencing, chaining of trees, etc.).

Many examples of landscapes severely degraded by overgrazing exist and the

mismanagement of rangeland has fueled a widespread anti-grazing sentiment.  Many

environmental groups have advocated the complete removal of cattle from large

tracts of land, and this approach has been implemented on many National Park

Service lands (Anderson 1993).  The responses of  arid and semi-arid grasslands to

exclusion from cattle grazing have been mixed, with changing richness of native

species ranging from dramatic increases (Brady et al. 1989) to slight decreases (Rambo
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and Faeth 1999).  When interpreting vegetation responses to livestock removal,

however, it is important to recognize that virtually all lands that are accessible to cattle

or sheep in the Southwest have been grazed intensively at one time or another.

Lands currently excluded from grazing do not necessarily represent the state of semi-

arid grassland ecosystems prior to the introduction of domestic livestock (Milton et

al. 1994), an ecological state that remains poorly understood and whose restoration is

beyond current technical capacity.  Instead, lands where grazing has been eliminated

represent the likely endpoint of cattle removal from similar ecosystems that are

currently being grazed.  Thus, constructive approaches to resolving the present graz-

ing debate will include the assessment of expected outcomes of different levels and

styles of rangeland management (including livestock removal), rather than a restricted

and largely theoretical choice between current conditions and those that predomi-

nated prior to the arrival of domestic grazers.

A Role for Research

Clearly, a broad range of  land management options currently exists, and many

are being implemented and evaluated across the Southwest.  Science provides a frame-

work for measuring and interpreting the environmental implications of each option.

To assess some key elements of  the ecological sustainability of  grazing in semi-arid

grasslands, we asked the following question:  Do belowground and aboveground

variables affecting grassland composition and function, respond in a predictable

manner to increasing grazing intensity?  For belowground properties, we measured

soil compaction and specific members of  the microbiotic community, whereas we

measured plant cover and macro-arthropods as aboveground properties.

METHODS

Meaningful application of science to grazing issues will require comparisons of

the effects of actual management practices, as well as experimental treatments de-

signed to elucidate the relationships between grazing and ecosystem sustainability.

In 1997 we initiated a study of grazing impacts in a semi-arid grassland in Arizona.

Our experimental design, replicated in time and space, consists of four treatments in

three blocks on the landscape (a total 12 study plots; see Sisk et al. 1999).  The four

treatments are as follows: (1) conventional low-density, long-duration grazing rota-

tions (CON); (2) high-density, short-duration rotations inspired by Savory (1988)

Holistic Resource Management (HRM); (3) very high-impact, short-duration grazing

to simulate herd impact (VHI); and (4) livestock exclosure (EXC).  Stocking rates and

rotations for the first two treatments are determined by ranchers and land manage-

ment agencies on adjoining pastures, while the latter two treatments are imple-

mented on fenced 1-ha experimental plots created and managed by researchers.  The

timing of the graze event for each of the three cattle treatments falls within the

months of May-October, but specific dates vary between years due to fluctuating

environmental conditions and ranching logistics.  Of the four treatments, only the

VHI treatment does not represent a current grazing policy, but it does simulate herd

behavior, and serves as a critical upper-end treatment to study the potential spectrum
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of responses.  In all CON and HRM plots, we have carefully matched elevation,

exposure, soil type, and vegetation type so that spatially and temporally extensive

treatment effects can be complemented with the exclosure and VHI treatments imple-

mented on 1-ha plots.  For the purpose of this paper, we present data from one

study site on the southern edge of the Colorado Plateau.

Site Description

Located at 2160m elevation in north-central Arizona, our primary field site is

Reed Lake, characterized by Upper Great Basin grassland (Brown 1994) surrounded

by Ponderosa Pine forest.  Dominant perennial grasses are Agropyron smithii (western

wheat grass) and Elymus elymoides (squirrel-tail grass).  Soil type is fairly homogeneous

among study plots and across our study site of approximately 25 ha, with a standard

error of less than 10% for each soil particle size class.  The top 8 cm of soil is, on

average, comprised of  42% sand, 12% silt, and 44% clay (Fig. 1).  Annual precipita-

tion averages between 300 mm and 460 mm with the majority generally falling as

monsoonal rains between June and September (Brown 1994).

Response Variables

Soil Compaction

As the intensity of cattle grazing increases, the amount of trampling increases.

We measured soil compaction in the top 5 cm of  the soil surface with a pocket soil

penetrometer (Ben Meadows Company, Atlanta, GA 30341).  In October of  1999,
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Figure 1.  Soil composition for 12, 1-ha plots at the Reed Lake study site.  Consistency

in proportional representation of particle size classes suggests that results from the

grazing experiment are not confounded by differences in soil type.
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each plot was measured in three locations that were haphazardly selected (except for

one of three plots in the conventional treatment that was missed due to a rain-

storm).  Within each of these locations the average of three readings was used as a

final soil compaction measurement.  This sampling event followed the conclusion

of grazing for 1999, and was chosen to represent the cumulative compaction for that

year.  Data were analyzed with ANOVA.

Soil Microbiotic Community

Alterations of soil quality can have effects on cyanobacteria populations and,

consequently, on their role as nitrogen fixers (Evans and Belnap 1999).  In 1999, we

employed a slide-incubation technique to assess cyanobacteria and diatoms (Rossi

and Riccardo 1927, Rossi et al. 1935).  Prior to the 1999 grazing season, five micro-

scope slides were placed in each corner of EXC and VHI plots, which minimized

potential disruption due to researchers in the plot.  Slides remained in the ground for

26 days to incubate microbes and were subsequently transported to the laboratory.

Cyanobacteria filaments and diatoms were then counted at 20X magnification with a

phase contrast microscope.  Data were analyzed with a nested ANOVA.

Plant Cover

Beginning in 1997, before the EXC and VHI treatments were initiated, we

conducted annual ground cover (both basal and foliar cover) surveys using the modi-

fied-Whittaker plot design (Stohlgren et al. 1995).  A modified-Whittaker plot was

placed within each of the 12 plots and permanently marked, so that the researchers

can return annually to conduct surveys.  Data were analyzed for 1997-99 with a

repeated measures ANOVA.

Arthropods

In 1998 we conducted sweep-net surveys of  plots in the EXC and VHI treat-

ments before and after the VHI grazing event.  Total abundance of  these vegetation-

dwelling arthropods was calculated for each plot.  Data were analyzed with a repeated

measures ANOVA.

RESULTS

Soil Compaction

In comparison with the EXC and CON treatments, the HRM and VHI treat-

ments showed greater soil compaction (df=3, F=15.308, P=0.006; Fig. 2).  These

increases are likely to have effects on other soil properties, including bulk density and

infiltration rates, but the extent of these effects will depend on the persistence of

these differences, which can only be determined through longer-term study.

Soil Microbiotic Community

Our VHI treatment had roughly 50% less colonization by cyanobacteria and

diatoms, in comparison with the EXC plots (df=1, F=8.98, P=0.0047; Fig. 3).  Be-

cause these organisms alter soil structure and fix nitrogen, these declines in abun-

dance may portend further ecological consequences.
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Plant Cover

We found plant cover to be fairly similar among treatments, ranging from 78%

to 88% (Fig. 4).  Year-to-year variation in total plant cover was not significant, whereas

treatment type was a significant factor (df=3, F=9.87, P<0.0001).  At a finer scale of

inspection, total plant cover measurements showed the HRM treatment to be con-

sistently lower than the EXC and CON treatments by about 7-9%.  Furthermore, the
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Figure 3.  Abundance of cyanobacteria and diatoms in exclosures (EXC) and very

high-intensity (VHI) plots following two years of treatment.  Different letters denote

significant differences in abundances (df=1, F=8.98, P=0.0047).

Figure 2.  Soil compaction under four grazing treatments, following three years of

treatment.  EXC = livestock exclosure; CON = conventional, low-density, long-duration

grazing; HRM = high-intensity, short-duration grazing; VHI = very high-intensity, short-

duration grazing to simulate herd impact.  Different letters denote significant

differences in the degree of soil compaction (df=3, F=15.308, P=0.006).
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VHI treatment exhibited an 8% decline in plant cover after one year of treatment, but

this difference did not persist into 1999.  In general, short-term effects of treatments

were measured, but their long-term implications remain unclear.  Finer resolution

measures, such as comparisons of community composition, are addressed in a sepa-

rate paper (Loeser et al. in prep.).

Arthropods

Pre-graze and post-graze sampling of EXC and VHI plots showed a decline of

greater than 50% in arthropod abundance following the VHI grazing event in 1998

(df=1, F=5.95, P=0.07; Fig. 5).  In contrast to this short-term response, the pre-graze

abundance, which is a measure of response since the 1997 grazing event, did not

differ between treatments, suggesting that long-term effects may be negligible.

DISCUSSION

Although we are in the early stages of  a long-term study, we have detected short-

term differences among four treatments reflecting a gradient of  grazing intensity.  In

general, it appears that soil properties and belowground processes are more sensitive,

over the short-term, to differences in grazing treatments than are aboveground prop-

erties.  This supports similar conclusions drawn by Anderson (1995) who argued

that belowground organisms may be keenly susceptible to land-use change.  Mea-

surements of short-term changes in above- and belowground communities due to

grazing were not unexpected, however, the more ecologically and policy relevant

questions involve long-term shifts in biological diversity and ecosystem productivity.
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Figure 4.  Percent plant cover for four grazing treatments (see Fig. 2 and text for

treatment descriptions).  EXC and VHI treatments were initiated following data

collection in 1997, while CON and HRM treatments were put in place more than 12

years prior to initiation of this study.  Between-year differences were not significant

for any treatment; significant within-year differences among treatments are denoted

by different letters (df=3, F=9.87, P<0.0001).
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While these questions will only be answered with longer-term datasets, the short-

term changes we have detected indicate that the experimental treatments have had

significant, measurable effects that capture relevant impacts along a gradient of graz-

ing intensities.

Belowground Properties

If the fundamental structure of the soil is being altered by the more intensive

grazing treatments, as suggested by an increase in compaction in HRM and VHI

plots, we would expect belowground soil organisms to respond.  Furthermore, soil

structural changes will likely affect other abiotic parameters, such as water penetration

and retention. Preliminary results from our soil moisture measurements suggest

that more heavily compacted sites have 1-5% less soil moisture (Loeser et al. unpub.).

These alterations in soil abiotic parameters likely explain the nearly two-fold decrease

in cyanobacteria and diatoms in the VHI compared to EXC treatments.  Soil micro-

organisms in particular have limited mobility and are known to be sensitive to com-

paction (Whitford et al. 1995).  Preliminary results from other ongoing studies at this

site suggest that soil microarthropod abundance is roughly 40% lower in VHI plots

than EXC plots (Loeser et al. unpub.).

Aboveground Properties

While belowground properties appear to be responding quickly to treatment

effects, aboveground organisms, including plants and arthropods, have not yet dem-

onstrated clear trends.  Plots of the HRM treatment consistently showed lower
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Figure 5.  Arthropod abundance in exclosures (EXC) and very high-intensity (VHI)

plots, before and after the 1998 grazing event, as determined by sweep net samples.

Different letters denote a significant difference (df=1, F=5.95, P=0.07).
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ground cover than EXC plots, but because this was evident at the time that experi-

ment began, it cannot be ascribed to the treatment itself.  A treatment effect did occur

in VHI plots after only one year, resulting in a loss of 10% of the live plant cover, but

this difference did not persist into subsequent years.  When we tested the possible

relationship between arthropod samples and plant data, we did not find significant

correlations (R2=0.01, P=0.12).  Arthropod samples collected shortly after the VHI

grazing event showed a significant decline in total arthropod abundance, but samples

from 1999, collected prior to grazing, did not differ significantly among treatments.

While this suggests rapid recovery of  the arthropod fauna, future collections over

larger areas will be needed to determine long-term trends.  Although our initial

results are not conclusive, they indicate that alternative grazing treatments, such as the

EXC and VHI treatments, have mixed effects on plants and arthropod communi-

ties.

Although aboveground measurements, such as plant cover and species rich-

ness, tend to dominate the grazing literature, we have demonstrated that measure-

ments at multiple trophic levels offer additional information and provide a tractable

approach for investigating grazing impacts on underlying ecosystem processes.  A

traditional animal- or forage-based approach would likely conclude that these treat-

ment effects do not differ significantly, but clearly the impacts are more complicated,

particularly within the soil.  While additional data over an extended time period will

be required to untangle grazing impacts and their ecological consequences, significant

short-term differences in particular response variables between the two most extreme

treatments indicate the methods that we employed to measure changes in this sys-

tem are robust, and that long-term research efforts are justified.

Assessing the multi-faceted environmental implications of livestock grazing in

the Southwest requires objective quantification of  grazing impacts.  We believe that

an assessment of the environmental impacts of grazing should also examine graz-

ing policy in the context of the increasing need for ecologically sustainable agriculture.

Our research demonstrates short-term negative effects of very high grazing events on

soil fauna and arthropods, but has not yet demonstrated long-term patterns in

aboveground properties.  As one of the very few bioregionally significant food

production systems on the southern Colorado Plateau, grazing provides a significant

source of edible protein that utilizes grassland communities comprised largely of

native species.  Efforts to generate more detailed and credible information on cattle

and grassland community production levels might serve as common ground for

opposing parties to discuss real-world compromises and the inclusive environmen-

tal impacts of livestock grazing versus increasing reliance on food, water, and energy

imports to support the region’s growing human population.  We strongly believe

that future research should move beyond the simplistic approach of grazed-versus-

ungrazed comparisons to address a wider range of grazing practices, in order to more

effectively determine whether an ecologically sustainable and socially acceptable level

of grazing may exist for the publicly owned semi-arid grasslands of the Colorado

Plateau.
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